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Dimensionality and CAT estimation

ABSTRACT

This study examined the effect of dimensionality on an adaptive test's ability estimation.

Two-dimensional data sets were generated which differed from one another in the interdi-

mensional ability association, the correlation among the difficulty parameters, and

whether the item discriminations were or were not confounded with item difficulty. The

generated data were used for Bayesian CAT simulations (three-parameter logistic model)

and the CAT ability estimates were compared with the the simulees known abilities (8Ts).

Results show that t :,. dimensionality of the response data shifts the focus for this mini-

mization of measurement errors from 9T (with unieunensional data) to the average of the

latent abilities (with bidimensional data).

Running Head : Dimensionality and CAT estimation

Key Words : CAT, dimensionality, IRT, Bayesian methods, computerized testing
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Computerized adaptive testing (CAT) is concerned with the minimization of mea-

surement errors in the estimation of an examinee's ability. To achieve this goal the exam-

inee is administered items based on his or her current ability estimate. These items are

selected such that the examinee is expected to have about a fifty percent chance of cor-

rectly answering the items. Some of CAT's benefits include equiprecise measurement

throughout the ability continuum and adaptive tests which are shorter than the corre-

sponding paper-and-pencil tests.

CATs typically are based on one of the dichotomous unidimensional IRT models,

such as the three-parameter logistic (3PL) or Rasch models (e.g., McBride & Martin, 1983;

Kingsbury & Houser, 1988). The development of the CAT item pool requires the identifi-

cation of the data's dimensionality before fitting the IRT model. That is, although some

items may be considered unidimensional, other test items may require more than one

ability to obtain a co:rect response. For instance, correctly answering a mathematical

wore problem may be considered to be a function of reading and mathematical abilities.

Implications of the violation of unidimensionality for CAT item pool development (e.g.,

equating, scale shrinkage) may be found in Doody-Bogan and Yen (1983) as well as in Yen

(1985).

Multidimensional models have been developed in order to address the issue of

multiple latent dimensions (e.g., McKinley & Reckase, 1983; Sympson, 1978). These

models are classified as either compensatory or noncompensatory. Conceptually, a com-

pensatory model is one in which an examinee's latent traits interact to produce A response

to an item. This interaction may take the form of an examinee's facility in one latent trait

(0) compensating for a deficiency in another 0. In contrast, in a nc Jmpensatory model

the examinee's es do not interact to yield a response. Although these models have been

used in some research they have yet to obtain widespread acceptance or use it applica-

tions.
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Given that the dimensionality assumption of unidimensional IRT subsumes the

principle of local independence (Lord, 1980), violation of this assumption should affect

the likelihood function used for parameter estimation. A nunber of studies (e.g.,

Ackerman, 1989; Way, Ansley, & Forsyth, 1988; Ansley & Forsyth, 1985; Reckase, 1979)

have examined the effect of multidimensional response data on unidimensional IRT

parameter estimates. These studies have been primarily concerned with the effects of

dimensionality on the calibration of a multidimensional data set by either LOGIST

(Wingerskey, Barton, & Lord, 1982) or BILOG (Mislevy & Bock, 1982). Although the

models used for data generation differed, the results of these studies have found that

dimensionality affects parameter estimation. !a general, when a compensatory multidi-

mensional IRT model was used for data generations was foltrid to be an estimate of the

average of the true bs (Way et al., 1988), ci was an estimate of the sum of al and a2 (Way et

al., 1988), and ability estimates 6 to be an estimate of the average true Os (Ackerman,

1989; Way et al., 1988). In contrast, data generation using a noncompensatory model

showed that s was an overestimate of or correlated more highly with b/ than with b2

(Ackerman, 1989; Way et al., 1988; Ansley & Forsyth, 1985), a was an estimate of the

average of the true as (Way et al,, 1988; Ansley & Forsyth, 1985), and 6 to be an estimate

of the average true Os (Ackerman, 1989; Way et al., 1988; Ansley & Forsyth, 1985). In

general, these conclusions come from correlational analyses of the parameters with their

estimates and an assessment of the accuracy of parameter estimation by the calculation of

the mean absolute difference (a.k.a., MAD or AAD) across whichever was pertinent,

examinees or items.

In general, studies which have investigated the operating characteristics of CAT

have involved the simulation of unidimensional data and item pools (e.g., Weiss, 1982;

McBride, 1977; Jensema, 1974). However, given "...that no actual psychological measure-

ment instrument is likely to be exactly unidimensional..." the issue becomes ore of
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whether the "...instrument is sufficiently unidimensional to allow application of IRT"

(Hu lin, rrasgow, & Parsons, 1983, p. 40). In live testings, where the possibility of less

than ideal unidimensional data may exist, the primary concern has been with the estima-

tion of the reliability and validity of CAT (e.g., M:-Bride & Martin, 1983; Weiss &

Kingsbury. 1984). Further, because in these studies the examinee's true ability is

unknown the influence of dimensionality on the accuracy of ability parameter estimation

cannot be investigated.

This study investigated the effect of varying degreee of dimensionality on CAT

ability estimation. That is, an adaptive test based on unidimensional item parameter was

administered to an simulee who used more than one ability to respond. Two-dimensional

data sets were generated which differed from one another in the interdimensional ability

assoCation, the correlation among the difficulty parameters, and whether the item

discriminations were or were not confounded with item difficulty. This latter factor is

included because of Reckase, Carlson, Ackerman. an 1 Spray's (1986) finding that upper

deciles of a unidimensional ability differ mainly on 02 while at lower deciles the ability

differed primarily on 01 (cited in Ackerman. 1989). Simulees with known abilities were

administered unidimensional i.sts and their abilities estimated on the basis of their

multidimensional responses. In contrast to the studies mentioned above (i.e., Ackerman,

1989; Way et al.. 1985; Ansley & Forsyth, 1985), the accuracy and bias of the Os at

various points along the ability continuum was assessed.

METHOD

Data : The data were generated according to a multidimensional 3PL (M3PL) model (Doody-

Bogan & Yen. 1983). This model requires a set of multidimensional Os as well as a set of

(multidimensional) item parameters. The multidimensional Os were generated such that

the examinee's ability on dimension 1 (01) was evenly distributed between -3.0 and 3.0

usirg 0.4 logit interval between successive 0 levels (i.e., for 100 examinees 01 =-3.0, for

6
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100 examinees 01 =-2.6, etc.). The examinee's ability on the second dimension (02) was

derived from 01 by using Hoffman's (1959) technique for generating correlated data. For

each of the 160C simulees 02 was obtained by randomly sampling a normal deviate (Z) from

a unit normal curve and calculating :

02 = 01 + (k / r)Z (1);

where k=4-1--;72, and r is the desired intercorrelation between 01 and 02. Four

interdimensional 0 correlations (r0102) were investigated from extreme bidimensionality

to almost unidimensionality; values for re' 02 were 0.03, 0.30, 0.60, 0.90.

In the following an item parameter's subscript refers to a dimension. The

difficulty parameters (b/ and b2) were generated in a fashion analogous to the generation

of 01 and 02. That is, the b/ for sets of f3ur items was fixed at every 0.1 logit between -

3.5 and 3.5 (e.g., for 4 items bj= -3.5, for 4 items bj= -3.4, etc.). The b2 for each of the

284 items was derived from the item's 6/ wing the correlated generation method

mentioned above. Three b 102 correlations (rbjb2) were used in the study, 0.03, 0.60,

and 0.90.

The discrimination parameters (al and a2) were created by randomly sampling

from a uniform distribution with a minimum value of 0.20 and ti maximum value of 1.8.

This set of aF was combined with the three sets of bs to form three item pools where all

item pools had the same set of as; this combination of the randomly ordered as with the bs

form form the nonconfounding condition. The confounding between as and bs was obtained

by sorting al into ascending order and sorting a2 into descending arder (cf., Ackerman,

1989). The pseudo-guesting parameter, c, was set tc 0.20.

The interdimensional correlations of 0.30, 0.60, and 0.90 were obtained from the

literature (Ackerman,i 989; Way et al.,1988; Ansley and Forsyth, 1985); the r0102 = 0.03

was used as an approximation to r01 0 2 = 0.0 because this latter value could not be used

with the Hoffman's technique. The rb 11,2 = 0.03 was obtained from Yen (1985), whereas
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2=0.36) and rb/b2 = 0.90 0692the rb/62 = 0.60 (rb/b2 2=0.81) were used to simulate

moderate and high linear relationships. The minimum and maximum as are the same as

those in Ackerman (198y). The constant used for c came from Way et al. (1988).

To summarize, the data generation was based on 6 different combinations of item

parameters (3 levels of rbib2 by 2 levels of confounding) and four levels of interdimen-

sional ability association. The crossing of these three factors produced 24 response data

sets. For each data set the true OT s plus the relevant 284 true item parameters were used

to generate binary response strings with a random error component for each simulated

examinee. Generation of the binary response strings was accomplished by calculating for

a given OT pair and a given item the probability of a correct response according to the

M3PL model. To create the random error component for a response, a random number was

selected from a uniform distribution [0,1) and compared to the calculated probability. If

the random number was less than or equal to the calculated probability, then a response of

1 was produced (a correct answer), otherwise a 0 was generated (an incorrect response).

Program : A computer program was written that simulated a CAT based on the 3PL mode!

and which used Bayesian ability estimation with Owens Bayes updating (i.e., Jensema's

(1974) alpha technique) for item selection. The adaptive testing simulation was termi-

nated when either of two criteria were met : a maximum of thirty items was reached or

when a standard error of estimate (SEE) of 0.05 or less was obtained.

A unidimensional item pool was created for use with the Bayesian CAT.

Discrimination, difficulty, and pseudo-guessing parameters were generated for 284 items.

The discrimination (a) and pseudo-guessing (c) parameters were generated by random

sampling from a uniform distribution with the following restrictions : (a) a were

restricted to the inclusive range of 0.80..2.00; and (b) c were allowed to vary between 0.00

and 0.20. The difficulty parameters (b) were uniformly distributed between -3.5 and 3.5

(inclusive) with four items at each 0.10 of an interval (i.e., there were four items with h=



Dimensionality and CAT estimation
7

-3.5, four items with b= -3.4, etc.). The use of multiple items at each 0.1 interval was

done to ensure that items of appropriate difficulty would always be available for the

Bayesian CAT's ability estimation. These item parameters values are consistent with

desirable item pool characteristics (Patience and Reckase, 1980; Urry. 1977). Therefore,

to each of the 1600 examinees in each of the 24- multidimensional response data sets a

Bayesian CAT was administered.

Analyses : Analysis of the CAT simulations involved using root mean square error (RMSE),

bias, and correlations (Pearson product- moment, Spearman rank-order) between the 8 and

01, 02, and between 6 and the average of 01 and 02 (g). Descriptive statistics were

calculated on the number of items administered, the Os as well as on various item pool

characteristics.

RESULTS

For the 0.03, 0.30, 0.60, and 0.90 interdimensional ability conditions the observed

correlations were -0.028, 0.303, 0.590, and 0.964, respectively. Table 1 shows the item

parameters' interdimensional correlations for the confounded and nonconfounded condi-

tions. As can be seen, for the desired rbib2 of 0.03, 0.60, and 0.90 the observed correla-

tions were 0.095, 0.678, and 0.946. in addition, for the confounded conditions the corre-

lation between al and b j approached -1.00 and between a2 and to/ approximated 1.00. The

unidimensional item pool used for the CAT simulations had an average a of 1.410 (median

of 1.421) and a mean c of 0.102 (tr lian=0.101). The Pearson product-moment correlation

between a and b for the unidimensional item pool was 0.077 (Spearman rank-order was

0.076).

Insert Table 1 about here

Table 2 shows the correlational analyses between 6 and 01, 02, and g. for the

nonconfounded conditions. As can be seen, for each level of the rbib2 factor the

association between CAT 0 and al and with 02 became increasingly stronger as re 1 02

9
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increased. The intercorrelation between bs appeared to have a slight effect on the corre-

lation betweta 6 and 01 and between 6 and 02. Further, there was a slight decrease in the

average number of items administered with increasing intercorrelation between the bs.

Although for the rbl b2 = 0.90 and re 102 = 0.90 conditions there were minimal

differences between rgi, rge 1, and rge2, for all combinations of the rob2 and re 182

factors the linear association between 4 and 6 was greater than for either rge 1 or rge2.

Insert Table 2 about here

Figure 1 shows the RMSE analysis for the three levels of rblb2 and the re102 =

0.03 and re 102 = 0.90 conditions; the differences in the plotted 0 values reflect the differ-

ences in the re 182 conditions. As can be seen, the RMSE with respect to 6 was less than

that of the RMSE of either 01 or 02 for all nonconfounded conditions. In fact, the RMSE

with respect to 6 for the re102 = 0.90 condition is comparable to RMSE for when re 182 =

0.03, re102 = 0.30, and re 102 = 0.60; the RMSE plots for these latter two conditions are the

intermediate steps in the progression from re 182 = 0.03 RMSE plots to those of rem =

0.90. The RMSE with respect to 6 decreased slightly as r61b2 increased. As re 102

increased, the RMSE of 01 or 02 approached that of 6.

Insert Figure 1 about here

As would be expected from a Bayesian CAT, the CAT overestimated low abilty on

01 and 01 (i.e., OT < -2.0) and underestimated high ability on 01 gild 02 (i.e., OT > 2.0);

Figt.re 2 shows the bias plots for the nonconfounded conditions presented in Figure 1. As

re 1 82 increased the bias with respect to 01 and 02 decreased. For all combinations of the

r01 82 and rblb2 factors, minimal bias was obtained when g was considered an estimate of

g. The rblb2 factor does not appear to have a meaningful effect on but, for 0), 92, and 6.

Insert Figure 2 about here

10
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Table 3 presents the results from the confounded conditions. As was the case with

the nonconfounded condition, # is more highly related to (I than to either 01 or 02. In

general, 41 tends to be larger than rge2 for re 192 values of 0.03 and 0.30, whereas for

the re 1 02 = 0.60 and re102 = 0.90 conditions the opposite is true. Unlike the

nonconfounded condition, when re 1 e2 = 0.90 the rge2 and rgg correlations are more

similar to one one another and higher in magnitude than rge 1. Further, for all

combinations of the rbib2 and re192 factors the average test length in the confounded

condition was slightly less than the corresponding nonconfounded condition test length.

The pattern of decreasing test length with increasing rb j h2 association was not as evident

with the confounded condition as it was under the nonconfounded condition.

Insert Table 3 about here

Inspection of the confounded conditions' RMSE clots showed the same relationship

between g, 0, 01, and 02; Figure 3 contains the confounded condition sample RMSE plots for

the same conditions presented in Figure 1. For the rb j b2 = 0.03 and rinb2 = 0.60

conditions and for the approximate range -2.0 < 0 < 2.0, the RMSE for the confounded

conditions are lower than those for the nonconfounded conditions, regardless of the 4)102

condition; as rtab2 increases the difference in RMSEs diminishes. As was the case for

the nonconfounded condition, the RMSE of 02 was less than that of 01 for high ability

examinees for the rbib2 = 0.03 condition. In contrast to the nonconfounded condition,

the RMSE with respect to 01 was less for lower ability examinees than that of the RMSE 02.

For all combinations of interdimensional ability and difficulty association the RMSE of 0

was less than that of 01 and e2.

Insert Figure 3 about here

Figure 4 presents the corresponding bias plots to those in Figure 2's, but for the

confounded condition. As can be seen, compared to the nonconfounded condition there was

1l
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less bias for 01 at low abilities, but no meaningful difference at upper abilities. Although

at the rb 1 b2 = 041:; and rb1b2 = 0.60 conditions there is no difference between the

confounded and nonconfounded conditions in bias with respect to 02, for the rb 1 b2 = 0.90

there was an increase in bias for e < -1.0. For all interdimensional difficulty levels there

was an increase in bias for 02 in the 0 range 1.0 to 3.0. In general, as rel 02 increased this

pattern was evident, although with decreasing levels of bias in the estimation of el and 02.

As was the case with the nonconfounded condition, the bias in 6 with respect to g was less

than that of estimating either el or 02, except when re1e2 = 0.90. In this latter condition,

the differences in bias with respect to 01, 02 and g, may not be considered meaningful by

some; for this re 102 condition there does not appear to be any difference in bias between

the confounded and nonconfounded conditions. For re102 = 0.90 and regardless of rb 1 1,2

level, the CAT overestimated low ability more than it underestimated high ability.

Insert Figure 4 about here

As stated above, for the nonconfounded condition there was a slight decrease in the

average number of items administered with increasing rb Ib2, although this pattern was

not as evident with the confounded condition. Calculation of the average number of items

administered at each of the 16 levels of 0 showed that, in general, shorter tests were

administered for 0 < 0.0 (e.g., average test lengths of 15-16 items depending on the condi-

tion) to longer tests for 0 > 2.0 (e.g., mean test lengths of 17-20 items depending on

particular data set; the rb 11)2 = 0.03, re102 = 0.90 condition had an atypical meal, test

length of 22 items for 0 = 3.0). With increasing rb Ib2 and re102 the mean test lengths

became less variable across 0. Of the 38,400 adaptive tests simulated the absolute maxi-

mum and minimum test lengths were 28 and 11 items, respectively.

Conclusion and Discussion

In general, increasing interdimensional difficulty association produced a slight

decrease on test length and an increase in the accuracy of ability estimation as assessed

12
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by RMSE. The associations oetween 6 and g, 01, and 02 incwased as the correlation

between interdimensional difficulties and interdimensional ability increased. The

largest associations were between 0 and 5; 0.957 and 0.961 for the nonconfounded and

confounded conditions, respectively. For comparative purAses, a Bayesian CAT

(maximum test length of 20 items and termination SEE of 0.05) using a unidimensional

data set (generated according to the 3PL model and using this item pool) had a rge of 0.988

(for both Pearson and Spearman coefficients) and an average test length of 15.613.

When discrimination was confounded with difficulty, the ability estimates showed

a differential association with one of the two latent traits, however, the correlation

between 0 and g was always greater than that of 401 and 402. For all combinations of the

rbib2 and 4)102 factors the correlation between 6 and g for the confounded condition was

always greater than for the correlation for the corresponding nonconfounded condition.

From the results of the studies on the effects of dimensionality on the calibration

of compensatory multidimensional data it may be hypothesized that the finding that 4 was

an estimate of the average true es was, in part, a result of the fact that S was an estimate of

the average of the true bs. That is, because b and A are on the same scale, when the

separate dimensions are collapsed in the estimation of b, the subsequent stage of

estimatir will also reflect the collapsed difficulty scale; ooth BILOG and LOGIST obtain

'Ps prior to estimating 0. However, given that in CAT the item parameters are asstrned true

then the collapsing of the two difficulty scales does not account for 6 being an estimate of

the average OTs.

Con :eptually, the item pool may be considered to have come from the calibration of

a unidimensione data set. However, the results should be generalizable to those

situations where item parameters are obtained from data which are not truly unidimen-

sional (i.e., the situations investigated by Ackerman, 1989; Way, et al , 1988; Ansley &

Forsyth, 1985). For item selection it is the distribution of b and the magnitude V a and c

13
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which are important; CAT makes no distinction with respect to whether 9 - 6 or 9 = (6 j+

b2)/2 and ii =a or as scal + a2.

As stated above, CAT is concerned with minimizing the measurement errors

associated with the estimation of an examinee's ability. It was shown that the dimen-

sionality of the response data shifts the focus for the minimization of measurement errors

from OT (with unidimensional data) to the average of the latent abilities (with bidimen-

sional data). Although the results may be considered problematic by some, there may be

situations where one is only interested in ordering examinees on their ability to perform

or solve certain types of problems and not in ordering them on the separate latent

abilities which may be required to solve the problems. For example, on a statistics exam

the instructor may only be interested in a student's understanding of the appropriateness

and use of t-tests. The problems may be stated as word problems and require stating the

appropriate statistical hypotheses, identification of and calculating the relevant t-

statistic, arriving at caiclusions concerning the truth or falsity of hypotheses, etc. Most

likely the instructor is not interested in the student's standing on the separate abilities

required to answer the problem (e.g., his or her reading ability, math ability, etc), but in

the student's understanding of t-tests. Reckase, Ackerman, and Carlson (1988) have

concluded that IRT's unidimensionality assumption does not necessarily require test

items to measure a single ability, but rather the unidimensionality assumption requires

the test items to measure the same composite of abilities. For this study, this composite

of abilities was t:w average of 01 and 02.

14
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Table 1. Item parameters interdimensional correlationsa.

Condition Item Parameter a2 t 1 b2

rb1b2 = 0.03 al -0.990 -0.995 -0.088

(-0.032) (-0.022) (0.055)

a2 0.997 0.112

(0.014) (-0.034)

b1 0.095

(0.095)

rb 1 b2 = 0.60 al -0.990 -0.997 -0.677

(-0.032) (-0.022) (0.027)

a2 0.995 0.671

(0.014) (-0.016)

6/ 0.678

(0.678)

rb/b2 = 0.90 al -0.990 -0.997 -0.944

(-0.032) (-0.022) (-0.002)

a2 0.995 0.940

(0.014) '0.002)

bi 0.946

(0.946)

aPearson product-moment correlations for confounded and (nonconfounded) conditions.
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Dimensionality and CAT estimation

Table 2. Intercorrelationsa between 6 and 01, 02, II and the average number the of items
administered (Mean NIA) for the nonconfounded conditions.

Item Pool
Characteristics

rob2 re1e2

rgei r8e2 rgg Mean NIA
(SD NIA)

0.03 0.03 0.500 0.645 0.821 17.206
(0.518) (0.520) (0.785) (2.577)

0.30 0.611 0.752 0.844 17.187
(0.630) (0.660) (0.825) (2.649)

0.60 0.741 0.816 0.875 17.146
(0.751) (0.825) (0.854) (2.587)

0.90 0.890 0.893 0.900 17.408
(0.890 ) (0.880) (0.891) (2.773)

0.60 0.03 0.513 0.694 0.866 16.896
(0.539) (0.564) (0.840) (2.390)

0.30 0.678 0.779 0.903 16.878
(0.697) (0.686) (0.888) (2.440)

0.60 0.799 0.849 0.924 16.703
(0.801) (0.863) (0.902) (2.442)

0.90 0.922 0.929 0.934 16.926
(0.921) (0.915) (0.924) (2.543)

0.90 0.03 0.552 0.723 0.914 16.407
(0.562) (0.601) (0.889) (2.249)

0.30 0.727 0.194 0.942 16.323
(0.734) (0.707) (0.925) (2.243)

0.60 0.829 0.874 0.955 16.265
(0.823) (0.886) (0.928) (2.257)

0.90 0.945 0.;`51 0.957 16.428
(0.940) (0.935) (0.942) (2.408)

aPearson product-moment correlation coefficient (Spearman rank-order correlation
coefficient)

18



Dimensionality and CAT estimation

Table 3. Intercorrelatiensa between 6 and 01,02. Ef and the average number the of items
administered (Mean NSA) for the confounded conditions.

Item Pool r6e1
Characteristics

rge2 rgu Mean NIA
(SD NIA)

rb1 b2 r9102
0.03 0.03 0.628 0.623 0.897 16.433

(0.674) (0.437) (0.851) (2.213)
0.30 0.692 0.768 0.905 16.689

(0.747) (0.617) (0.886) (2.379)
0.60 0.763 0.850 0.905 16.703

(0.801) (0.836) (0.883) (2.495)
0.90 0.907 0.921 0.922 17.394

(0.907) (0.910) (0.909) (3.178)
0.60 0.03 0.663 0.620 0.920 16.337

(0.720) (0.422) (0.877) (2.300)
0.30 0.760 0.750 0.976 16.293

(0.797) (0.614) (0.923) (2.209)
0.60 0.834 0.856 0.948 16.276

(0.850) (0.851) (0.916) (2.214)
0.90 0.928 0.942 0.943 16.730

(0.927) (0.933) (0.930) (2.582)
0.90 0.03 0.704 0.608 0.941 15.917

(0.749) (0.418) (0.907) (2.110)
0.30 0.787 0.756 0.956 16.066

(0.802) (0.635) (0.942) (2.085)
0.60 0.840 0.874 0.961 16.031

(0.845) (0.868) (0.923) (2.056)
0.90 0.944 0.955 0.958 16.230

(0.939) (0.945) (0.941) (2.235)

aPearson product-moment correlation coefficient (Spearman rank-order correlation
coefficient)
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Dimensionality al:d CAT estimation

Figure Captions

figure 1,. RMSE analysis for the nonconfounded condtions for rbib2 = 0.03, rbib2 = 0.60.
rbib2 = 0.90 and re1e2 = 0.03, re1e2 = 0.90.
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Dimensionality and CAT estimation

Figure Captions

Eyre 2. Bias analysis for the nonconfounded condtions for rb1b2 = 0.03, rb1b2 = 0.60,
rb1b2 = 0.90 and ieid2 = 0.03, r0102 = 0.90.
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Dimensionality and CAT estimation

Figure Captions

Figure 3, RMSE analysis for the confounded condtions for rob2 = 0.03, rb1 b2 = 0.60,
rbib2 = 0.90 and re1e2 = 0.03, re1e2 = 0.90.
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Dimensionality and CAT estimation

Figure Captions

Figure 4.. Bias analyss for the confounded condtions for rfr ib2 = 0.05, rbib2 = 0.60,
rbib2= 0.90 mid rei82 = 0.03, 17402 = 0.90.
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